Part Number Hot Search : 
AAT1271A CA0358M 15200 T9127 AC100 MOC3009X GMS97L54 LG12340
Product Description
Full Text Search
 

To Download IRFR3412PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.kersemi.com 1 12/03/04 IRFR3412PBF irfu3412pbf smps mosfet hexfet   power mosfet v dss r ds(on) max i d 100v 0.025 ? 48a    switch mode power supply (smps)  motor drive   bridge converters   all zero voltage switching  lead-free benefits applications  low gate charge qg results in simple drive requirement  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche voltage and current  enhanced body diode dv/dt capability parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 48  i d @ t c = 100c continuous drain current, v gs @ 10v 34  a i dm pulsed drain current  190 p d @t c = 25c power dissipation 140 w linear derating factor 0.95 w/c v gs gate-to-source voltage 20 v dv/dt peak diode recovery dv/dt  6.4 v/ns t j operating junction and -55 to + 175 c t stg storage temperature range soldering temperature, for 10 second 300(1.6mm from case ) mounting torqe, 6-32 or m3 screw 10 lbfin (1.1nm) absolute maximum ratings symbol parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c, i s = 29a, v gs = 0v  t rr reverse recovery time ??? 68 100 ns t j = 125c, i f = 29a q rr reverse recoverycharge ??? 160 240 nc di/dt = 100a/s   i rrm reverse recoverycurrent ??? 4.5 6.8 a t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) s d g diode characteristics 48  190  d-pak  i-pak irfr3412 irfu3412

 2 www.kersemi.com parameter min. typ. max. units conditions g fs forward transconductance 25 ??? ??? s v ds = 50v, i d = 29a q g total gate charge ??? 59 89 i d = 29a q gs gate-to-source charge ??? 21 32 nc v ds = 50v q gd gate-to-drain ("miller") charge ??? 17 26 v gs = 10v,  t d(on) turn-on delay time ??? 19 ??? v dd = 50v t r rise time ??? 68 ??? i d = 29a t d(off) turn-off delay time ??? 44 ??? r g = 6.8 ? t f fall time ??? 37 ??? v gs = 10v  c iss input capacitance ??? 3430 ??? v gs = 0v c oss output capacitance ??? 270 ??? v ds = 25v c rss reverse transfer capacitance ??? 150 ??? pf ? = 1.0mhz c oss output capacitance ??? 1040 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 170 ??? v gs = 0v, v ds = 80v, ? = 1.0mhz c oss eff. effective output capacitance ??? 270 ??? v gs = 0v, v ds = 0v to 80v  dynamic @ t j = 25c (unless otherwise specified) ns parameter typ. max. units e as single pulse avalanche energy  ??? 160 mj i ar avalanche current  ??? 29 a e ar repetitive avalanche energy  ??? 14 mj avalanche characteristics static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 100 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.10 ??? v/c reference to 25c, i d = 1ma  r ds(on) static drain-to-source on-resistance ??? ??? 0.025 ? v gs = 10v, i d = 29a  v gs(th) gate threshold voltage 3.5 ??? 5.5 v v ds = v gs , i d = 250a ??? ??? 1.0 a v ds = 95v, v gs = 0v ??? ??? 250 v ds = 80v, v gs = 0v, t j = 150c gate-to-source forward leakage ??? ??? 100 v gs = 20v gate-to-source reverse leakage ??? ??? -100 na v gs = -20v i gss i dss drain-to-source leakage current   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11)  i sd 29a, di/dt 420a/s, v dd v (br)dss , t j 150c    starting t j = 25c, l = 0.38mh, r g = 25 ? , i as = 29a, (see figure 12a)  pulse width 300s; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss  calculated continuous current based on maximum allowable junction temperature. package limitation current is 30a. parameter typ. max. units r jc junction-to-case ??? 1.05 r ja junction-to-ambient (pcb mount)* ??? 50 c/w r ja junction-to-ambient ??? 110 thermal resistance

 www.kersemi.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.01 0.1 1 10 100 1000 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 1 10 100 1000 0.1 1 10 100 20s pulse width t = 175 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 0.1 1 10 100 1000 4.0 5.0 6.0 7.0 8.0 9.0 v = 25v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 48a

 4 www.kersemi.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20406080100 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v vds= 50v vds= 20v i d = 29a

 www.kersemi.com 5 fig 10a. switching time test circuit v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms   
 1     0.1 %           + -   fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 175 0 10 20 30 40 50 t , case temperature ( c) i , drain current (a) c d limited by package

 6 www.kersemi.com 25 50 75 100 125 150 175 0 50 100 150 200 250 300 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 12a 21a 29a q g q gs q gd v g charge d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -
 fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs

 www.kersemi.com 7 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfet   power mosfets   
     
              ?     ?   ?    !" ## ?  $   
%! !%   ?  &' !  ? ( !)  ?  &* ! %!    

 8 www.kersemi.com  

  

  12 in the ass embly line "a" ass embled on ww 16, 1999 example: with assembly t his is an irfr120 lot code 1234 ye ar 9 = 199 9 dat e code we e k 16 part number logo int ernat ional rect ifier as s e mb l y lot code 916a irfu120 34 year 9 = 1999 dat e code or p = designat es lead-free product (optional) note: "p" in as s embly line position i ndi cates "l ead-f r ee" 12 34 we e k 16 a = assembly site code part number irf u120 line a logo lot code as s e mb l y int ernational rectifier

 www.kersemi.com 9   
     
         
  as s e mb l y example: wi t h as s e mb l y this is an irfu120 ye ar 9 = 199 9 dat e code line a we e k 1 9 in the assembly line "a" as s e mbl e d on ww 19, 1999 l ot code 5678 part number 56 irfu120 international logo rectifier lot code 919a 78 note: "p" in as s embly line position indicates "lead-free"  56 78 as s e mb l y lot code rectifier logo international irfu120 part number we e k 1 9 dat e code year 9 = 1999 a = as s e mb l y s i t e code p = designates lead-free product (optional)

 10 www.kersemi.com   

     
        tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFR3412PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X